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We have found anomalous behavior in the variation of width
and position of the resonance as a function of the effcctivc mass
Hamiltonian parameter. This is an addendum to our previous
paper, Solid State Communications 72, 7 (19S9). C,
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Recently,' we analyzed a resonant tunneling struc-
ture (a single well formed by two barriers of finite widths
and heights,2 henceforth referred to as RTS) by us-
ing a general effective mass Hamiltonian, 3 and found
that physical properties such as dwell time and aver-
age speed depend considerably on the matching param-
eter. For the sake of completeness, the effective mass
Hamiltonian and the physical properties of the RTS are
described briefly here. The stationary-state properties
of an RTS in the effective mass approximation are ob-
tained by solving the Schr6dinger equation for the en-
velop function c(x) along the growth direction x, where
the mass also varies as x:

[hm( d bd
h ma (X)dm (x)dm(x) + V(x) - EJ(x) 0
9 dx dX (1)

Here V(x) is the RTS potential profile

Vi, if0<x<a,
V(X)= 0, if a, _x< a,+d,

V2, ifa,+d:x<a,+d+a 2

where V' and ai (i=1,2) are the heights and widths of
the barriers, d is the width of the well, m(x) is the ef-
fective mass, and 2a + b = -1 from the dimensionality
condition with a and b as constants. These constants
ensure that the Hamiltonian is Hermitian. The kinetic
energy operator of Eq. (1) dictates that mra(x)x(x) and

ma+b(x) d\ () must be continuous across the interface,
implying the physical result that the current density

jx O? R, f d' } =\P- R}Ma(X)jsMa+b(X)dx I be contin-

uous. However, in general, the charge density p oc x*q
need not be continuous across an interface. For the spe-
cial case of a = 0 and b = -1 one obtains, in addition,
the continuity of charge density. So, this is a single-
parameter b (a = -b- "b) problem.

The resonance states depend on b, as demonstrated
in our uadiler paper,' where we concluded that one can
not a priori prefer one value of b over another. It was
also suggested that to better understand the underlying
physics and also to fix a value of b , one needs to do
some microscopic calculations.

The study of Ref. 1 was mainly concentrated on the
calculation of the dwell time rD over the region 0 to x, of
the structure, with x, extending from 0 to a, + d + a2 ,
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defined" 4 as the integrated probability density of the
electron per unit incidence flux

7D(X) Xj d M)k ,I(y) 12 (2)

where k h = and a constant value for m(y)
(0.067) has been assumed in Eq.(2) to calculate 77(x).
The associated average local speed was also calculated,
and in the variation of local speed as a function of x,
there were discontinuities observed at the interfaces.

The values of the resonance energy and the energy
at half of the maximum transmission for a symmetric
RTS and the resonance energy for an asymmetric RTS
for given values of b were displayed in Table 1 of Ref.
1. which indirectly shows the variation of the width of
the first resonance state as a function of b. In this ad-
dendum, we have studied in particular the parameter
b dependence of the position and width of the first three
resonance states of a RTS. The variation of 7D() as a
function of x for different values of b is also shown.

A slightly different RTS than the one studied in
the Ref. 1 is under investigation here2 since the RTS of
Ref. 1 does not have three resonance states (the reason
to choose the RTS with three resonance states is pointed
out later in the text). Figure 1 displays the first reso-
nance energy ER in panel (1) and width AER in panel
(2) as functions of the parameter b. Panel (3) displays
7D as a function of x for three different b values, -2. 0
& 2. The change in b from -2 to 2 moves the first res-
onance state considerably up, whereas its width, panel
(2), decrease as b increases from -2 to 2. This variation
of width is also clear from the plot of 7D versus x, where
a broader resonance implies less average time spent by
an electron in the RTS and vice versa. Even though
TD(X), the average time spent by an electron inside the
RTS, depends strongly on b, AERrD(ai + d + a2 ) has
been found independent of b and approximately equal to
2h, which is twice the escape time 7.sc (AER7ec -,)
of the electron from the resonance state.

The variation of the position and width was fur-
ther analyzed for the second resonance state of the RTS
of Ref. 1 (which only has two resonances) in order to
assess the general pattern. Results of this investigation
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are not shown here for the brevity. It was found that by
changing b from -2 to 2, the width of the second reso-
nance state increases as the resonance energy increases,
in contrast to what has been found for the first reso-
nance state. A very simple explanation for such behav-
ior could have been that the wavefunction of the first
resonance state is symmetric whereas the wavefunction
of the second one is asymmetric, and one would expect
two different wavefunctions to respond differently to a
change in b. We should mention here that the width of
the first resonance state always decreases as b increases
for an RTS with either two or three resonance states,
and Fig. 1 shows the results for the RTS of Ref. 2 with
three resonance states.

To make sure that it is the nature of the wavefunc-
tion of the resonance state which causes the anomaly in
the variation of the widths of different resonance states,
one should study a system which at least has two reso-
nance states with the same kind of wavefunction. This is
the reason to consider a different RTS than the one stud-
ied in Ref. 1. Figure 2 shows the results for the second
resonance state of the RTS of Ref. 2. The resonance en-
ergy increases, whereas the width of the resonance goes
through a maximum as the parameter b increases. This

maximum in the plot of the width versus b is also appar-
ent in the variation of rD(x) as a function of x (panel 3
of Fig. 2), where the average time spent by an electron
is almost the same for the -2 and 0 values of b. It would
be wise to note here that for the second resonance state
we also have AERD(ai ± d + a 2 ) - 2h. Figure 3 dis-
plays the results for the third resonance state, where
the variation of ER and AER as b in panel (1) and (2),
respectively, and rD(X) as x in panel (3) are the2 same as
those found for the second resonance state of the RTS
of Ref. 1. The equality AERTD(aI + d + a2 ) '- 2h is
also true for this resonance state.

Most of the experimental observations are analyzed
with the model calculations based on several approxi-
mations and presumptions, and as far as the literature
goes, we do not think that a definite boundary condi-
tion for such an abrupt interfaces has yet been found. It
has always been presumed that b =-I and a=0. Unless
there is an exact theoretical investigation to establish
a boundary condition for such a system, the boundary
condition will remain as that one of parameter fitting to
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the experimental data. In conclusion, since the anoma-
lous variation of the widths of the resonance states can
not be attributed to the nature of the wavefunctions of
these states, a microscopic calculation5 ,6 of such a sys-
tem could resolve this problem. A further investigation
in order to find a boundary condition is under way to
study the effect of b on the position of impurity levels
in quantum confined structures.

This research was supported by the Office of Naval
Research. Part of the calculation was done utilizing
the facilities at the Pittsburgh Supercomputing Center
under NSF Grant No. PHY890020P.
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Figure Captions
Fig. 1. Resonance energy ER ( panel 1) and width ZAER

(panel 2) as functions of the parameter b . Panel 3
shows the dwell time TD as a function of position
x. The physical parameters of the RTS studied are
given in Ref. 2.

Fig. 2. Same as in Fig. 1 but for the second resonance
state.

Fig. 3. Same as in Fig. 1 but for the third resonance state.
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